Коры головного мозга

Кора головного мозга, зоны коры головного мозга. Строение и функции коры головного мозга



Современным ученым доподлинно известно, что благодаря функционированию головного мозга возможны такие способности, как осознание сигналов, которые получены из внешней среды, мыслительная деятельность, запоминание мышления.

Оглавление:

Способность личности осознавать собственные отношения с другими людьми непосредственно связано с процессом возбуждения нейронных сетей. Причем речь идет именно о тех нейронных сетях, которые расположены в коре. Она представляет собой структурную основу сознания и интеллекта.

В данной статье рассмотрим, как устроена кора головного мозга, зоны коры головного мозга будут подробно описаны.

Неокортекс

Кора включает в себя около четырнадцати миллиардов нейронов. Именно благодаря им осуществляется функционирование основных зон. Подавляющая часть нейронов, до девяноста процентов, формирует неокортекс. Он является частью соматической НС и ее высшим интегративным отделом. Важнейшими функциями коры головного мозга выступают восприятие, переработка, интерпретация информации, которую человек получает при помощи всевозможных органов чувств.

Помимо этого, неокортекс управляет сложными движениями системы мышц человеческого тела. В нем расположены центры, принимающие участие в процессе речи, хранении памяти, абстрактном мышлении. Большая часть процессов, которые в нем происходят, формирует нейрофизическую основу человеческого сознания.



Из каких отделов еще состоит кора головного мозга? Зоны коры головного мозга рассмотрим ниже.

Палеокортекс

Является еще одним большим и важным отделом коры. В сравнении с неокортексом у палеокортекса более простая структура. Процессы, которые здесь протекают, редко отражаются в сознании. В этом отделе коры высшие вегетативные центры локализуются.

Связь коркового слоя с другими отделами мозга

Немаловажно рассмотреть связь, которая имеется между нижележащими отделами мозга и корой больших полушарий, например, с таламусом, мостом, средним мостом, базальными ядрами. Осуществляется эта связь при помощи крупных пучков волокон, которые внутреннюю капсулу формируют. Пучки волокон представлены широкими пластами, которые сложены из белого вещества. В них расположено огромное количество нервных волокон. Некоторая часть этих волокон обеспечивает передачу нервных сигналов к коре. Остальная часть пучков передает нервные импульсы к расположенным ниже нервным центрам.

Как устроена кора головного мозга? Зоны коры головного мозга будут представлены далее.

Строение коры

Самым большим отделом мозга является его кора. Причем зоны коры являются лишь одним типом частей, выделяемых в коре. Помимо этого кора разделена на два полушария – правое и левое. Между собой полушария соединены пучками белого вещества, формирующими мозолистое тело. Его функция – обеспечивать координацию деятельности обоих полушарий.



Классификация зон коры головного мозга по их расположению

Несмотря на то что кора имеет огромное количество складок, в общем расположение ее отдельных извилин и борозд постоянно. Главные их них являются ориентиром при выделении областей коры. К таким зонам (долям) относятся – затылочная, височная, лобная, теменная. Несмотря на то что они классифицируются по месту расположения, каждая из них имеет свои собственные специфические функции.

Слуховая зона коры головного мозга

К примеру, височная зона является центром, в котором расположен корковый отдел анализатора слуха. Если происходит повреждение этого отдела коры, может возникнуть глухота. Помимо этого в слуховой зоне расположен центр речи Вернике. Если повреждению подвергается он, то человек теряется способность к восприятию устной речи. Человек воспринимает ее как простой шум. Также в височной доле есть нейронные центры, которые относятся к вестибулярному аппарату. Если повреждаются они, нарушается чувство равновесия.

Речевые зоны коры головного мозга

В лобной доле коры сосредоточены речевые зоны. Речедвигательный центр расположен тоже здесь. Если происходит его повреждение в правом полушарии, то человек теряет способность изменять тембр и интонацию собственной речи, которая становится монотонной. Если же повреждение речевого центра произошло в левом полушарии, то пропадает артикуляция, способность к членораздельной речи и пению. Из чего еще состоит кора головного мозга? Зоны коры головного мозга имеют различные функции.

Зрительные зоны

В затылочной доле располагается зрительная зона, в которой находится центр, отвечающий на наше зрение как таковое. Восприятие окружающего мира происходит именно этой частью мозга, а не глазами. Именно затылочная зона коры ответственна за зрение, и ее повреждение может привести к частичной или полной потере зрения. Зрительная зона коры головного мозга рассмотрена. Что дальше?

Для теменной доли тоже характерны свои собственные специфические функции. Именно эта зона отвечает за способность анализировать информацию, которая касается тактильной, температурной и болевой чувствительности. Если происходит повреждение теменной области, рефлексы головного мозга нарушаются. Человек не может на ощупь распознавать предметы.



Двигательная зона

Поговорим о двигательной зоне отдельно. Следует отметить, что эта зона коры никак не соотносится с долями, рассмотренными выше. Она является частью коры, содержащей прямые связи с мотонейронами в спинном мозге. Такое название носят нейроны, непосредственно управляющие деятельностью мышц тела.

Основная двигательная зона коры больших полушарий располагается в извилине, которая называется прецентральной. Эта извилина представляет собой зеркальное отображение сенсорной зоны по многим аспектам. Между ними имеется контралатеральная иннервация. Если сказать иными совами, то иннервация направлена на мышцы, которые расположены на другой стороне тела. Исключение – лицевая область, для которой характерен контроль мышц двусторонний, расположенных на челюсти, нижней части лица.

Немного ниже основной двигательной зоны расположена дополнительная зона. Ученые полагают, что она имеет независимые функции, которые связаны с процессом вывода двигательных импульсов. Дополнительная двигательная зона также изучалась специалистами. Эксперименты, которые ставились над животными, показывают, что стимуляция этой зоны провоцирует возникновение двигательных реакций. Особенностью является то, что подобные реакции возникают даже в том случае, если основная двигательная зона была изолирована или разрушена полностью. Она также вовлечена в планирование движений и в мотивацию речи в полушарии, которое является доминантным. Ученые полагают, что при повреждении дополнительной двигательной может возникнуть динамическая афазия. Рефлексы головного мозга страдают.

Классификация по строению и функциям коры головного мозга

Физиологические эксперименты и клинические испытыния, которые проводились еще в конце девятнадцатого века, позволили установить границы между областями, на которые проецируются разные рецепторные поверхности. Среди них выделяют органы чувств, которые направлены на внешний мир (кожная чувствительность, слух, зрение), рецепторы, заложенные непосредствен в органах движения (двигательный или кинетический анализаторы).

Зоны коры, в которых располагаются разнообразные анализаторы, могут быть классифицированы по строению и функциям. Так, их выделяют три. К ним относятся: первичная, вторичная, третичная зоны коры головного мозга. Развитие эмбриона предполагает закладывание только первичных зон, характеризующихся простой цитоархитектоникой. Далее происходит развитие вторичных, третичные развиваются в самую последнюю очередь. Для третичных зон характерно самое сложное строение. Рассмотрим каждую из них немного подробнее.



Центральные поля

За долгие годы клинических исследований ученым удалось накопить значительный опыт. Наблюдения позволили установить, например, что повреждения различных полей, в составе корковых отделов разных анализаторов, могут отразиться далеко не равнозначно на общей клинической картине. Если рассматривать все эти поля, то среди них можно выделить одно, которое занимает центральное положение в ядерной зоне. Такое поле носит название центрального или первичного. Находится оно одновременно в зрительной зоне, в кинестетической, в слуховой. Повреждение первичного поля влечет за собой весьма серьезные последствия. Человек не может воспринимать и осуществлять самые тонкие дифференцировки раздражителей, влияющих на соответствующие анализаторы. Как еще классифицируются участки коры головного мозга?

Первичные зоны

В первичных зонах расположен комплекс нейронов, который наиболее предрасположен к обеспечению двусторонних связей между корковыми и подкорковыми зонами. Именно этот комплекс наиболее прямым и коротким путем соединяет кору больших полушарий с разнообразными органами чувств. В связи с этим данные зоны обладают способностью очень подробной идентификации раздражителей.

Важной общей чертой функциональной и структурной организации первичных областей является то, все они имеют четкую соматическую проекцию. Это означает, что отдельные периферические точки, например, кожные поверхности, сетчатка глаза, скелетная мускулатура, улитки внутреннего уха, имеют собственную проекцию в строго ограниченные, соответствующие точки, которые находятся в первичных зонах коры соответствующих анализаторов. В связи с этим им было дано название проекционных зон коры головного мозга.

Вторичные зоны

По-другому эти зоны называются периферическими. Такое название дано им совсем не случайно. Они находятся в периферических отделах участков коры. От центральных (первичных) вторичные зоны отличаются нейронной организацией, физиологическими проявлениями и особенностями архитектоники.

Попробуем разобраться, какие эффекты возникают, если на вторичные зоны воздействует электрический раздражитель или происходит их повреждение. Главным образом возникающие эффекты касаются наиболее сложных видов процессов в психике. В том случае, если происходит повреждение вторичных зон, то элементарные ощущения остаются в относительной сохранности. В основном наблюдаются нарушения в способности правильного отражения взаимных соотношений и целых комплексов элементов, из которых состоят различные объекты, которые мы воспринимаем. К примеру, если повреждению подверглись вторичные зоны зрительной и слуховой коры, то можно наблюдать возникновение слуховых и зрительных галлюцинаций, которые разворачиваются в определенной временной и пространственной последовательности.



Вторичные области имеют значительную важность в реализации взаимных связей раздражителей, которые выделяются при помощи первичных зон коры. Помимо этого, значительную роль они играют в интеграции функций, которые осуществляют ядерные поля разных анализаторов в результате объединения в сложные комплексы рецепций.

Таким образом, вторичные зоны представляют особую важность для реализации психических процессов в более сложных формах, которые требуют координации и которые связаны с подробным анализом соотношений между предметными раздражителями. В ходе этого процесса устанавливаются специфические связи, которые носят название ассоциативных. Афферентные импульсы, поступающие в кору от рецепторов разных внешних органов чувств, достигают вторичных полей посредством множества дополнительных переключений в ассоциативном ядре таламуса, который также называется зрительным бугром. Афферентные импульсы, следующие в первичные зоны, в отличие от импульсов, следуют во вторичные зоны, достигают их путем, который короче. Он реализован посредством реле-ядра, в зрительном бугре.

Мы разобрались, за что отвечает кора головного мозга.

Что такое таламус?

От таламических ядер к каждой доле мозговых полушарий подходят волокна. Таламус является зрительным бугром, расположенным в центральной части переднего отдела мозга, состоит из большого количества ядер, каждое из которых осуществляет передачу импульса в определенные участки коры.

Все сигналы, которые поступают к коре (исключение составляют только обонятельные), проходят через релейные и интегративные ядра зрительного бугра. От ядер таламуса волокна направляются к сенсорным зонам. Вкусовая и соматосенсорная зоны расположены в теменной доле, слуховая сенсорная зона – в височной доле, зрительная – в затылочной.

Импульсы к ним поступают, соответственно, от вентро-базальных комплексов, медиальных и латеральных ядер. Моторные зоны связаны с вентеральным и вентролатеральным ядрами таламуса.

Десинхронизация ЭЭГ

Что произойдет, если на человека, находящегося в состоянии полного покоя, подействует очень сильный раздражитель? Естественно, что человек полностью сконцентрируется на данном раздражителе. Переход умственной деятельности, который осуществляется от состояния покоя к состоянию активности, отражается на ЭЭГ бета-ритмом, который замещает альфа-ритм. Колебания становятся более частыми. Такой переход называют десинхронизацией ЭЭГ, появляется он в результате поступления сенсорного возбуждения в кору от неспецифических ядер, расположенных в таламусе.

Активирующая ретикулярная система

Диффузную нервную сесть составляют неспецифические ядра. Находится эта система в медиальных отделах таламуса. Он является передним отделом активирующей ретикулярной системы, регулирующей возбудимость коры. Разнообразные сенсорные сигналы способны активировать данную систему. Сенсорные сигналы могут быть как зрительными, так и обонятельными, соматосенсорными, вестибулярными, слуховыми. Активизирующая ретикулярная система представляет собой канал, который передает к поверхностному слою коры данные сигналов через расположенные в таламусе неспецифические ядра. Возбуждение АРС необходимо для того, чтобы человек был способен поддерживать состояние бодрствования. Если в данной системе возникают нарушения, то могут наблюдаться коматозные сноподобные состояния.

Третичные зоны

Между анализаторами коры головного мозга имеются функциональные отношения, которые имеют еще более сложную структуру, чем та, что была описана выше. В процессе роста происходит взаимное перекрытие полей анализаторов. Такие зоны перекрытия, которые образуются у концов анализаторов, носят название третичных зон. Они являются самыми сложными типами объединения деятельности слухового, зрительного, кожно-кинестетического анализаторов. Расположены третичные зоны за границами собственных зон анализаторов. В связи с этим повреждение их не оказывает выраженного эффекта.

Третичные зоны представляют собой особые корковые области, в которых собраны рассеянные элементы разных анализаторов. Они занимают весьма обширную территорию, которая разделена на области.


Верхняя теменная область интегрирует движения всего тела с анализатором зрительным, формирует схему тел. Нижняя теменная область объединяет обобщенные формы сигнализации, которые связаны с дифференцированными предметными и речевыми действиями.

Не менее важной является височно-теменно-затылочная область. Отвечает она за усложненные интеграции слухового и зрительного анализаторов с устной и письменной речью.

Стоит отметить, что по сравнению с двумя первыми зонами, для третичных характерны наиболее сложные цепи взаимодействия.

Если опираться на весь изложенный выше материал, то можно сделать вывод о том, что первичные, вторичные, третичные зоны коры у человека носят высокую специализацию. Отдельно стоит подчеркнуть тот факт, что все три корковые зоны, которые мы рассматривали, в нормально функционирующем мозге совместно с системами связей и образованиями подкоркового расположения функционируют как единое дифференцированное целое.

Мы подробно рассмотрели зоны и отделы коры головного мозга.

Источник: http://www.syl.ru/article/331934/kora-golovnogo-mozga-zonyi-koryi-golovnogo-mozga-stroenie-i-funktsii-koryi-golovnogo-mozga



Строение коры головного мозга и ее функции

Кора головного мозга присутствует в строении организма многих существ, но у человека она достигла своего совершенства. Ученые утверждают, что это стало возможным благодаря вековой трудовой деятельности, которая сопровождает нас постоянно. В отличие от зверей, птиц или рыб, человек постоянно развивает свои возможности и это улучшает его мозговую деятельность, в том числе и функции коры мозга.

Но, давайте подойдем к этому постепенно, вначале рассмотрев строение коры, что, несомненно, очень увлекательно.

Внутреннее устройство коры головного мозга

Кора головного мозга насчитывает более 15 миллиардов нервных клеток и волокон. Каждая из них имеет разную форму, и образуют несколько уникальных слоев, отвечающих за определенные функции. К примеру, функциональность клеток второго и третьего слоя заключается в трансформации возбуждения и правильное перенаправление в определенные отделы головного мозга. А, например, центробежные импульсы представляют собой работоспособность пятого слоя. Рассмотрим каждый слой более тщательно.

Нумерация слоев головного мозга начинается от поверхности и идет глубже:

  1. Молекулярный слой имеет принципиальное отличие своим низких уровнем клеток. Их очень ограниченное количество, состоящее из нервных волокон тесно взаимосвязаны с друг другом.
  2. Зернистый слой иначе называется наружный. Это обусловлено наличием внутреннего слоя.
  3. Пирамидный уровень назван в честь своего строения, потому что имеет пирамидную структуру нейронов, различных по величине.
  4. Зернистый слой №2 получил название внутренний.
  5. Пирамидальный уровень №2 аналогичен третьему уровню. Его состав – это нейроны пирамидного образа имеющий средний и большой размер. Они проникают до молекулярного уровня, поскольку в нем содержаться апикальные дендриты.
  6. Шестой слой, это фузиформные клетки, имеющие второе название «веретеновидные», которые планомерно переходят в белое вещество головного мозга.

Если рассматривать эти уровни более углубленно, то получается, что кора головного мозга принимает на себя проекции каждых уровней возбуждения, которые протекают в разных отделах ЦНС и называются «нижележащие». Они, в свою очередь, транспортируются до мозга по нервным путям человеческого организма.



Презентация: «Локализация высших психических функций в коре головного мозга»

Таким образом, кора головного мозга — орган высшей нервной деятельности человека, и регулирует абсолютно все нервные процессы, происходящие в организме.

И это происходит благодаря особенностям ее строения, а она разделена на три зоны: ассоциативную, моторную и сенсорную.

Современное представление о строении коры головного мозга

Стоит отметить, что существует и несколько отличное представление о ее строении. Согласно нему, существует три зоны, которые отличает друг от друга не только строение, но и ее функциональным предназначением.

  • Первичная зона (моторная), в которой находятся ее специализированные и высокодифференцированные нервные клетки, получают импульсы от слуховые, зрительных и других рецепторов. Это очень важная зона, поражение которой может привести к серьезным расстройствам двигательной и чувствительной функции.
  • Вторичная (сенсорная) зона отвечает за функции обработки информации. К тому же, ее строение состоит из периферических отделов ядер анализаторов, которые устанавливают корректные связи между раздражителями. Ее поражение грозит человеку серьезным расстройством восприятия.
  • Ассоциативная, или третичная зона, ее строение позволяет, возбуждаться от импульсов, идущих от рецепторов кожи, слуха и др. Она формирует условные рефлексы человека, помогая познавать окружающую действительность.

Презентация: «Кора головного мозга»

Основные функции

Чем же отличается кора головного мозга человека и животного? Тем, что ее предназначение обобщать все отделы и контролировать работы. Данные функции обеспечивают миллиарды нейронов, имеющих разнообразное строение. К ним относятся такие виды, как вставочные, афферентные и эфферентные. Поэтому актуально будет рассмотреть каждые из этих видов более подробно.

Вставочный вид нейронов имеют на первый взгляд взаимоисключающие функции, а именно – тормоз и возбуждение.

Афферентный вид нейронов несет ответственность за импульсы, а точнее за их передачу. Эфферентные, в свою очередь, обеспечивают конкретную область деятельности человека и относят к периферии.



Безусловно, это медицинская терминология и стоит отвлечься от нее, конкретизировав функциональность коры головного мозга человека на простом народном языке. Итак, кора головного мозга отвечает за следующие функции:

  • Способность корректно устанавливать связь между внутренними органами и тканями. И даже более того, делает ее идеальной. Такая возможность базируется на условных и безусловных рефлексах человеческого тела.
  • Организация взаимоотношений человеческого организма и окружающей среды. Помимо этого, она контролирует функциональность органов, корректирует их работу и несет ответственность за обмен веществ в человеческом организме.
  • На 100% отвечает за то, чтобы процессы мышления были корректны.
  • И заключительная, но не менее важная функция – высочайший уровень нервной деятельности.

Ознакомившись с данными функциями, мы приходим к понимаю, что совершенствование коры головного мозга, позволило каждому человеку и всему роду в целом, научится осуществлять контроль за теми процессами, которые происходят в организме.

Презентация: «Структурно-функциональная характеристика сенсорной коры»

Академик Павлов в своих множественных исследованиях не единожды указывал, что именно кора является и распорядителем, и распределителем деятельности человека и животных.

Но, стоит также отметить, что кора головного мозга обладает неоднозначными функциями. Главным образом, это проявляется в работе центральной извилины и лобных долей, которые отвечают за сокращение мышц на совершенно противоположной этому раздражению стороне.

К тому же, разные ее части отвечают за разные функции. Например, затылочные доли за зрительные, а височные – за слуховые функции:


  • Если быть более конкретным, то затылочная доля коры фактически является проекцией сетчатой оболочки глаза, которая отвечает за ее зрительные функции. Если в ней происходит какое-либо нарушений, человек может лишиться зрительной памяти, ориентации в незнакомой обстановки и даже к полной, необратимой слепоте.
  • Височная доля – это область слуховой рецепции, которая получает импульсы от улитки внутреннего уха, то есть, отвечает за ее слуховые функции. Повреждения этой части коры грозят человеку полной или частичной глухотой, которая сопровождается полным непониманием слов.
  • Нижняя доля центральной извилины отвечает за мозговые анализаторы или, другими словами, вкусовую рецепцию. Она получает импульсы от слизистой полости рта и ее поражение угрожает потерей всех вкусовых ощущений.
  • И наконец, передняя часть коры головного мозга, в которой расположена грушевидная доля отвечает за обонятельную рецепцию, то есть – функции носа. Импульсы в нее поступают от слизистой оболочки носа, если она будет поражена, то человек потеряет обоняние.

Не стоит лишний раз напоминать, что человек находится на высшей ступени развития.

Это подтверждает строение особенно развитой лобной области, которая в ответе за трудовую деятельность и речь. Также она важна в процессе формирования поведенческих реакций человека и его приспособительных функций.

Существует множество исследований, в том числе работы известного академика Павлова, который работал с собаками, изучая строение и работу коры головного мозга. Все они доказывают преимущества человека над животными, именно благодаря особенному ее строению.

Правда, не стоит забывать, что все части находятся в тесном контакте друг с другом и зависят от работы каждой из его составляющих, так что, совершенство человека, залог работы головного мозга в целом.

Интересные факты

Из данной статьи читатель уже понял, что головной мозг человека является сложным и до сих пор малоизучен. Тем не менее, он идеальное устройство. Кстати, мало кто знает, что мощность обработки процессов в мозге настолько высока, что рядом с ней бессилен самый мощный в мире компьютер.



Вот еще несколько интересных фактов, которые опубликовали ученные после ряда испытаний и исследований:

  • 2017 года ознаменовался проведением эксперимента, в ходе которого гипер-мощный ПК попытался имитировать лишь 1 секунду активности головного мозга. Тест занял порядка 40 минут. Результат эксперимента – компьютер не справился с заданием.
  • Объем памяти человеческого мозга вмещает n-число bt, которое выражается 8432 нулями. Приблизительно этоТb. Если на примере, то в национальном Британском архиве хранится историческая информация за последние 9 веков и объем ее всего лишь 70 Тb. Ощутите насколько весомая разница между этими цифрами.
  • Человеческий мозг заключает в себе 100 тысяч километров сосудов, 100 миллиардов нейронов (цифра равная числу звезд во всей нашей галактике). Помимо этого в мозгу находятся сто триллионов нейронных связей, которые отвечают за формирование воспоминаний. Таким образом, когда вы познаете что-то новое, структура головного мозга изменяется.
  • Во время пробуждения головной мозг аккумулирует электрополе мощность в 23 Вт – этого достаточно зажечь лампу Ильича.
  • По весу мозг состоит из 2% от общей массы, однако задействует он примерно 16% энергии в теле и более 17% кислорода, содержащегося в крови.
  • Ещё один интересный факт, что головной мозг состоит из воды на 75%, а по структуре чем-то сход с сыром «Тофу». А 60% мозга – жир. Ввиду этого для корректной деятельности мозга необходимо здоровое и правильное питание. Употребляйте каждый день в пищу рыбу, оливковое масло, семечки или орехи – и Ваш мозг будет работать долго и ясно.
  • Некоторые ученые, проведя ряд исследований, заметили, что при диете мозг начинает «кушать» сам себя. А низкий уровень кислорода в течение пяти минут способен привести к необратимым последствиям.
  • Удивительно, но человеческое существо не способно щекотать самого себя, т.к. мозг настраивается на внешние раздражители и чтобы не пропустить эти сигналы, немного игнорируется действия самого человека.
  • Забывчивость является естественным процессом. То есть, ликвидация ненужных данных позволяет ЦНС быть гибкой. А влияние алкогольных напитков на память объясняется тем, что спирт затормаживает процессы.
  • Реакция мозга на спиртосодержащие напитки составляет шесть минут.

Активизация интеллекта позволяет производить дополнительную мозговую ткань, которая компенсирует те, что заболели. Ввиду этого рекомендуется заниматься развитием, что в дальнейшем избавит Вас от слабого ума и различных расстройств психики.

Занимайтесь новыми занятиями – это лучше всего способствует развитию мозга. К примеру, общение с людьми, превосходящими Вас в той или иной интеллектуальной области является сильным средством по развитию Вашего интеллекта.
  • Автор: TonusMozga
  • Распечатать
  1. 5
  2. 4
  3. 3
  4. 2
  5. 1

Копирование материалов разрешено только с указанием активной ссылки на первоисточник.

Источник: http://tonusmozga.ru/mozg/funkcii-kory-golovnogo-mozga.html

Коры головного мозга

КОРА ГОЛОВНОГО МОЗГА (cortex encephali) — все поверхности полушарий большого мозга, покрытые плащом (pallium), образованным серым веществом. Вместе с другими отделами ц. н. с. кора участвует в регуляции и координации всех функций организма, играет исключительно важную роль в психической, или высшей нервной деятельности (см.).



В соответствии с этапами эволюционного развития ц. н. с. кору делят на старую и новую. Старая кора (archicortex — собственно старая кора и paleocortex — древняя кора) — филогенетически более древнее образование, чем новая кора (neocortex), появившаяся в процессе развития больших полушарий головного мозга (см. Архитектоника коры головного мозга, Головной мозг).

Морфологически К. г. м. образована нервными клетками (см.), их отростками и нейроглией (см.), имеющей опорно-трофическую функцию. У приматов и человека в коре насчитывается ок. 10 млрд. нейроцитов (нейронов). В зависимости от формы различают пирамидальные и звездчатые нейроциты, которые характеризуются большим разнообразием. Аксоны пирамидальных нейроцитов направляются в подкорковое белое вещество, а их апикальные дендриты — в наружный слой коры. Звездчатые нейроциты имеют только внутрикорковые аксоны. Дендриты и аксоны звездчатых нейроцитов обильно ветвятся вблизи клеточных тел; часть аксонов подходит к наружному слою коры, где они, следуя горизонтально, образуют густое сплетение с вершинами апикальных дендритов пирамидальных нейроцитов. Вдоль поверхности дендритов имеются почковидные выросты, или шипики, которые представляют собой область аксодендритных синапсов (см.). Мембрана тела клетки является областью аксосоматических синапсов. В каждой области коры имеется множество входных (афферентных) и выходных (эфферентных) волокон. Эфферентные волокна идут к другим областям К. г. м., к подкорковым образованиям или к двигательным центрам спинного мозга (см.). Афферентные волокна входят в кору от клеток подкорковых структур.

Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, слабо отдифференцированного от нижележащих подкорковых структур. Собственно старая кора состоит из 2—3 слоев.

Новая кора имеет более сложное строение и занимает (у человека) ок. 96% всей поверхности К. г. м. Поэтому, когда говорят о К. г. м., то обычно подразумевают новую кору, к-рую подразделяют на лобную, височную, затылочную и теменную доли. Эти доли делят на области и цитоархитектонические поля (см. Архитектоника коры головного мозга).

Толщина коры у приматов и человека варьирует от 1,5 мм (на поверхности извилин) до 3—5 мм (в глубине борозд). На срезах, окрашенных по Нисслю, видно слоистое строение коры, к-рое зависит от группировки нейроцитов на разных ее уровнях (слоях). В коре принято различать 6 слоев. Первый слой беден клеточными телами; второй и третий — содержат малые, средние и большие пирамидальные нейроциты; четвертый слой — зона звездчатых нейроцитов; пятый слой содержит гигантопирамидальные нейроциты (гигантские пирамидные клетки); шестой слой характеризуется наличием мультиформных нейроцитов. Однако шестислойная организация коры не является абсолютной, т. к. в действительности во многих отделах коры имеет место постепенный и равномерный переход между слоями. Клетки всех слоев, расположенные на одном перпендикуляре по отношению к поверхности коры, тесно связаны между собой и с подкорковыми образованиями. Такой комплекс называют колонкой клеток. Каждая такая колонка отвечает за восприятие преимущественно одного вида чувствительности. Напр., одна из колонок коркового представительства зрительного анализатора воспринимает движение предмета в горизонтальной плоскости, соседняя — в вертикальной и т. п.



Аналогичные комплексы клеток новой коры имеют горизонтальную ориентацию. Предполагают, что, напр., мелкоклеточные слон II и IV состоят в основном из воспринимающих клеток и являются «входами» в кору, крупноклеточный слой V — это «выход» из коры в подкорковые структуры, а среднеклеточный слой III — ассоциативный, связывает между собой различные зоны коры.

Т. о., можно выделить несколько типов прямых и обратных связей между клеточными элементами коры и подкорковых образований: вертикальные пучки волокон, несущие информацию из подкорковых структур к коре и обратно; внутрикортикальные (горизонтальные) пучки ассоциативных волокон, проходящие на различных уровнях коры и белого вещества.

Вариабельность и своеобразие строения нейроцитов свидетельствуют о чрезвычайной сложности аппаратов внутрикорковых переключений и способов соединений между нейроцитами. Такую особенность строения К. г. м. следует рассматривать как морфол, эквивалент ее чрезвычайной реактивности и функц, пластичности, обеспечивающих ей высшие нервные функции.

Увеличение массы корковой ткани происходило в ограниченном пространстве черепа, поэтому поверхность коры, гладкая у низших млекопитающих, у высших млекопитающих и человека преобразовалась в извилины и борозды (рис. 1). Именно с развитием коры уже в прошлом столетии ученые связывали такие стороны деятельности мозга, как память (см.), интеллект, сознание (см.), мышление (см.) и т. п.

1870 год И. П. Павлов определил как год, «с которого начинается научная плодотворная работа по изучению больших полушарий». В этом году Фрич и Гитциг (G. Fritsch, E. Hitzig, 1870) показали, что электрическое раздражение определенных участков переднего отдела К. г. м. собак вызывает сокращение определенных групп скелетной мускулатуры. Многие ученые полагали, что при раздражении К. г. м. активируются «центры» произвольных движений и моторной памяти. Однако еще Ч. Шеррингтон предпочитал избегать функц, интерпретации этого явления и ограничивался лишь утверждением, что область коры, раздражение к-рой вызывает сокращение мышечных групп, интимно связана со спинным мозгом.



Направления экспериментальных исследований К. г. м. конца прошлого столетия почти всегда были связаны с проблемами клин, неврологии. На этой основе были начаты опыты с частичной или полной декортикацией головного мозга (см.). Первым полную декортикацию у собаки произвел Гольтц (F. L. Goltz, 1892). Декортицированная собака оказалась жизнеспособной, но у нее были резко нарушены многие важнейшие функции — зрение, слух, ориентация в пространстве, координация движений и др. До открытия И. П. Павловым феномена условного рефлекса (см.) интерпретация опытов как с полными, так и частичными экстирпациями коры страдала отсутствием объективного критерия их оценки. Введение условнорефлекторного метода в практику эксперимента с экстирпациями открыло новую эру в исследованиях структурно-функциональной организации К. г. м.

Одновременно с открытием условного рефлекса возник вопрос и о его материальной структуре. Поскольку первые попытки выработать условный рефлекс у декортицированных собак не удались, И. П. Павлов пришел к выводу, что К. г. м. является «органом» условных рефлексов. Однако дальнейшими исследованиями была показана возможность выработки условных рефлексов у декортицированных животных. Было установлено, что условные рефлексы не нарушаются при вертикальных перерезках различных областей К. г. м. и разобщении их с подкорковыми образованиями. Эти факты наряду с электрофизиологическими данными дали повод рассматривать условный рефлекс как результат становления многоканальной связи между различными корковыми и подкорковыми структурами. Недостатки метода экстирпации для изучения значения К. г. м. в организации поведения побудили к разработке методик обратимого, функционального, выключения коры. Буреш и Бурешова (J. Bures, О. Buresova, 1962) применили феномен так наз. распространяющейся депрессии путем аппликации к тому или иному участку коры хлористого калия или других раздражителей. Поскольку депрессия не распространяется через борозды, этот метод можно использовать только на животных с гладкой поверхностью К. г. м. (крысы, мыши).

Другой путь функц, выключения К. г. м.— ее охлаждение. Метод, разработанный Н. Ю. Беленковым с сотр. (1969), состоит в том, что в соответствии с формой поверхности корковых областей, намечаемых к выключению, изготавливаются капсулы, которые вживляются над твердой мозговой оболочкой; во время эксперимента через капсулу пропускается охлажденная жидкость, вследствие чего температура коркового вещества под капсулой снижается до 22—20°. Отведение биопотенциалов с помощью микроэлектродов показывает, что при такой температуре импульсная активность нейронов прекращается. Метод холодовой декортикации, используемый в хрон, опытах на животных, продемонстрировал эффект экстренного отключения новой коры. Оказалось, что такое отключение прекращает осуществление ранее выработанных условных рефлексов. Т. о., было показано, что К. г. м. представляет собой необходимую структуру для проявления условного рефлекса в интактном мозге. Следовательно, наблюдаемые факты выработки условных рефлексов у хирургически декортицированных животных являются результатом компенсаторных перестроек, происходящих в интервале времени от момента операции до начала исследования животного в хрон, эксперименте. Компенсаторные явления имеют место и в случае функц, выключений новой коры. Так же, как и холодовое выключение, острое выключение новой коры у крыс с помощью распространяющейся депрессии резко нарушает условно-рефлекторную деятельность.

Сравнительная оценка эффектов полной и частичной декортикации у различных видов животных показала, что обезьяны переносят эти операции тяжелее, чем кошки и собаки. Степень нарушения функций при экстирпации одних и тех же зон коры различна у животных, стоящих на разных ступенях эволюционного развития. Напр., удаление височных областей у кошек и собак меньше нарушает функцию слуха, чем у обезьян. Точно так же зрение после удаления затылочной доли коры страдает у обезьян в большей степени, чем у кошек и собак. На основании этих данных возникло представление о кортиколизации функций в процессе эволюции ц. н. с., согласно к-рому филогенетически более ранние звенья нервной системы переходят на более низкий уровень иерархии. При этом К. г. м. пластически перестраивает функционирование этих, филогенетически более старых, структур в соответствии с влиянием окружающей среды.

Корковые проекции афферентных систем К. г. м. представляют собой специализированные конечные станции путей от органов чувств. От К. г. м. к мотонейронам спинного мозга в составе пирамидного тракта идут эфферентные пути. Они берут начало преимущественно от двигательной области коры, к-рая у приматов и человека представлена передней центральной извилиной, расположенной кпереди от центральной борозды. Кзади от центральной борозды расположена соматосенсорная область К. г. м.— задняя центральная извилина. Отдельные участки скелетной мускулатуры корти-колизированы в различной степени. Наименее дифференцированно в передней центральной извилине представлены нижние конечности и туловище, большую площадь занимает представительство мышц кисти. Еще более обширная область соответствует мускулатуре лица, языка и гортани. В задней центральной извилине в таком же соотношении, как и в передней центральной извилине, представлены афферентные проекции частей тела. Можно сказать, что организм как бы спроецирован в эти извилины в виде абстрактного «гомункулюса», который характеризуется чрезвычайным перевесом в пользу передних сегментов тела (рис. 2 и 3).



Помимо этого, в состав коры входят ассоциативные, или неспецифические, области, получающие информацию от рецепторов, воспринимающих раздражения различной модальности, и от всех проекционных зон. Филогенетическое развитие К. г. м. характеризуется прежде всего ростом ассоциативных зон (рис. 4) и обособлением их от проекционных. У низших млекопитающих (грызунов) почти вся кора состоит из одних только проекционных зон, выполняющих одновременно и ассоциативные функции. У человека проекционные зоны занимают лишь небольшую часть коры; все остальное отведено под ассоциативные зоны. Предполагают, что ассоциативные зоны играют особо важную роль в осуществлении сложных форм в. н. д.

У приматов и человека наибольшего развития достигает лобная (префронтальная) область. Это филогенетически самая молодая структура, имеющая непосредственное отношение к самым высшим психическим функциям. Однако попытки спроецировать эти функции на отдельные участки лобной коры не имеют успеха. Очевидно, любая часть лобной коры может включаться в осуществление любой из функций. Эффекты, наблюдаемые при разрушении различных участков этой области, относительно кратковременны или часто совсем отсутствуют (см. Лобэктомия).

Приуроченность отдельных структур К. г. м. к определенным функциям, рассматриваемая как проблема локализации функций, остается до сих пор одной из самых трудных проблем неврологии. Отмечая, что у животных после удаления классических проекционных зон (слуховых, зрительных) условные рефлексы на соответствующие раздражители частично сохраняются, И. П. Павлов высказал гипотезу о существовании «ядра» анализатора и его элементов, «рассеянных» по всей К. г. м. С помощью микроэлектродные методы исследования (см.) удалось зарегистрировать в различных областях К. г. м. активность специфических нейроцитов, отвечающих на стимулы определенной сенсорной модальности. Поверхностное отведение биоэлектрических потенциалов выявляет распределение первичных вызванных потенциалов на значительных площадях К. г. м.— за пределами соответствующих проекционных зон и цитоархитектонических полей. Эти факты наряду с поли-функциональностью нарушений при удалении любой сенсорной области или ее обратимом выключении указывают на множественное представительство функций в К. г. м. Двигательные функции также распределены на значительных площадях К. г. м. Так, нейроциты, отростки которых формируют пирамидный тракт, расположены не только в моторных областях, но и за их пределами. Помимо сенсорных и моторных клеток, в К. г. м. имеются еще и промежуточные клетки, или интернейроциты, составляющие основную массу К. г. м. и сосредоточенные гл. обр. в ассоциативных областях. На интернейроциты конвергируют разномодальные возбуждения.

Экспериментальные данные указывают, т. о., на относительность локализации функций в К. г. м., на отсутствие корковых «центров», зарезервированных под ту или иную функцию. Наименее дифференцированными в функц, отношении являются ассоциативные области, обладающие особо выраженными свойствами пластичности и взаимозамещаемости. Из этого, однако, не вытекает, что ассоциативные области эквипотенциальны. Принцип эквипотенциальности коры (равнозначности ее структур), высказанный Лешли (К. S. Lashley) в 1933 г. на основании результатов экстирпаций мало-дифференцированной коры крысы, в целом не может распространяться на организацию кортикальной активности у высших животных и человека. Принципу эквипотенциальности И. П. Павлов противопоставил концепцию о динамической локализации функций в К. г. м.

Решение проблемы структурно-функциональной организации К. г. м. во многом затрудняется отождествлением локализации симптомов экстирпаций и стимуляций определенных корковых зон с локализацией функций К. г. м. Этот вопрос касается уже методологических аспектов нейрофизиол, эксперимента, т. к. с диалектической точки зрения любая структурно-функциональная единица в том виде, в каком она выступает в каждом данном исследовании, представляет собой фрагмент, одну из сторон существования целого, продукт интеграции структур и связей мозга. Напр., положение о том, что функция моторной речи «локализуется» в нижней лобной извилине левого полушария, основано на результатах повреждения этой структуры. В то же время электрическая стимуляция этого «центра» речи никогда не вызывает акта артикуляции. Оказывается, однако, что произнесение целых фраз можно вызвать стимуляцией рострального таламуса, посылающего афферентные импульсы в левое полушарие. Фразы, вызванные такой стимуляцией, не имеют ничего общего с произвольной речью и не адекватны ситуации. Этот высоко-интегрированный эффект стимуляции свидетельствует о том, что восходящие афферентные импульсы трансформируются в нейрональный код, эффективный для высшего координационного механизма моторной речи. Точно так же сложнокоординированные движения, обусловленные раздражением моторной области коры, организуются не теми структурами, которые непосредственно подвергаются раздражению, а соседними или спинальными и экстрапирамидными системами, возбуждаемыми по нисходящим путям. Эти данные показывают, что между корой и подкорковыми образованиями имеется тесная связь. Поэтому нельзя противопоставлять кортикальные механизмы работе подкорковых структур, а надо рассматривать конкретные случаи их взаимодействия.



При электрической стимуляции отдельных корковых областей изменяется деятельность сердечно-сосудистой системы, дыхательного аппарата, жел.-киш. тракта и других висцеральных систем. Влияния К. г. м. на внутренние органы К. М. Быков обосновывал также возможностью образования висцеральных условных рефлексов, что наряду с вегетативными сдвигами при различных эмоциях было положено им в основу концепции существования кортико-висцеральных отношений. Проблема кортико-висцеральных отношений решается в плане изучения модуляции корой деятельности подкорковых структур, имеющих непосредственное отношение к регуляции внутренней среды организма.

Существенную роль играют связи К. г. м. с гипоталамусом (см.).

Уровень активности К. г. м. в основном определяется восходящими влияниями от ретикулярной формации (см.) ствола мозга, к-рую контролируют кортико-фугальные влияния. Эффект последних имеет динамический характер и является следствием текущего афферентного синтеза (см.). Исследования с помощью электроэнцефалографии (см.), в частности кортикографии (т. е. отведения биопотенциалов непосредственно от К. г. м.), казалось бы подтвердили гипотезу о замыкании временной связи между очагами возбуждений, возникающих в кортикальных проекциях сигнального и безусловного раздражителей в процессе образования условного рефлекса. Однако оказалось, что по мере упрочения поведенческих проявлений условного рефлекса электрографические признаки условной связи исчезают. Этот кризис методики электроэнцефалографии в познании механизма условного рефлекса был преодолен в исследованиях М. Н. Ливанова с сотр. (1972). Ими показано, что распространение возбуждения по К. г. м. и проявление условного рефлекса зависит от уровня дистантной синхронизации биопотенциалов, отводимых от пространственно удаленных пунктов К. г. м. Повышение уровня пространственной синхронизации наблюдается при умственном напряжении (рис. 5). В этом состоянии участки синхронизации не сконцентрированы в определенных зонах коры, а распределены по всей ее площади. Корреляционные отношения охватывают пункты всей лобной коры, но вместе с тем повышенная синхронность регистрируется и в предцентральной извилине, в теменной области и в других участках К. г. м.

Головной мозг состоит из двух симметричных частей (полушарий), связанных между собой комиссурами, состоящими из нервных волокон. Оба полушария головного мозга объединяются самой большой комиссурой — мозолистым телом (см.). Его волокна связывают идентичные пункты К. г. м. Мозолистое тело обеспечивает единство функционирования обоих полушарий. При его перерезке каждое полушарие начинает функционировать независимо одно от другого.

В процессе эволюции мозг человека приобрел свойство латерализации, или асимметрии (см.). Каждое его полушарие специализировалось для выполнения определенных функций. У большинства людей доминирующим является левое полушарие, обеспечивающее функцию речи и контроль за действием правой руки. Правое полушарие специализировано для восприятия формы и пространства. Вместе с тем функц, дифференциация полушарий не абсолютна. Тем не менее обширные повреждения левой височной доли сопровождаются, как правило, сенсорными и моторными нарушениями речи. Очевидно, что в основе латерализации лежат врожденные механизмы. Однако потенциальные возможности правого полушария в организации функции речи способны проявляться при повреждении левого полушария у новорожденных.



Имеются основания рассматривать латерализацию как адаптивный механизм, развившийся вследствие усложнения функций головного мозга на высшем этапе его развития. Латерализация препятствует интерференции различных интегративных механизмов во времени. Возможно, что кортикальная специализация противодействует несовместимости различных функциональных систем (см.), облегчает принятие решения о цели и способе действия. Интегративная деятельность мозга не исчерпывается, т. о., внешней (суммативной) целостностью, понимаемой как взаимодействие активностей независимых элементов (будь то нейроциты или целые образования мозга). На примере развития латерализации можно видеть, как сама эта целостная, интегративная деятельность мозга становится предпосылкой дифференциации свойств ее отдельных элементов, наделяет их функц, спецификой. Следовательно, функц, вклад каждой отдельной структуры К. г. м. в принципе нельзя оценить в отрыве от динамики интегративных свойств целостного мозга.

Патология

Кора головного мозга редко поражается изолированно. Признаки ее поражения в большей или меньшей степени обычно сопутствуют патологии головного мозга (см.) и входят в состав ее симптомов. Обычно патол, процессами поражается не только К. г. м., но и белое вещество полушарий. Поэтому под патологией К. г. м. обычно понимают ее преимущественное поражение (диффузное или локальное, без строгой границы между этими понятиями). Наиболее обширное и интенсивное поражение К. г. м. сопровождается исчезновением психической активности, комплексом как диффузных, так и локальных симптомов (см. Апаллический синдром). Наряду с неврол, симптомами поражения двигательной и чувствительной сферы, симптомами поражения различных анализаторов у детей является задержка развития речи и даже полная невозможность становления психики. В К. г. м. при этом наблюдаются изменения цитоархитектоники в виде нарушения слоистости, вплоть до полного ее исчезновения, очаги выпадения нейроцитов с замещением их разрастаниями глии, гетеротопия нейроцитов, патология синаптического аппарата и другие патоморфол, изменения. Поражения К. г. м. наблюдаются при различных врожденных аномалиях мозга в виде анэнцефалии, микрогирии, микроцефалии, при различных формах олигофрении (см.), а также при самых различных инфекциях и интоксикациях с поражением нервной системы, при черепно-мозговых травмах, при наследственных и дегенеративных заболеваниях мозга, нарушениях мозгового кровообращения и т. д.

Изучение ЭЭГ при локализации патол, очага в К. г. м. чаще выявляет преобладание очаговых медленных волн, которые рассматриваются как коррелят охранительного торможения (У. Уолтер, 1966). Слабая выраженность медленных волн в области патол, очага является полезным диагностическим признаком в предоперационной оценке состояния больных. Как показали исследования Н. П. Бехтеревой (1974), проведенные совместно с нейрохирургами, отсутствие медленных волн в области патол, очага является неблагоприятным прогностическим признаком последствий хирургического вмешательства. Для оценки патол, состояния К. г. м. используется также тест на взаимодействие ЭЭГ в зоне очагового поражения с вызванной активностью в ответ на положительные и дифференцировочные условные раздражители. Биоэлектрическим эффектом такого взаимодействия может быть как усиление очаговых медленных волн, так и ослабление их выраженности или усиление частых колебаний типа заостренных бета-волн.

Библиография: Анохин П. К. Биология и нейрофизиология условного рефлекса, М., 1968, библиогр.; Беленков Н. Ю. Фактор структурной интеграции в деятельности мозга, Усп. физиол, наук, т. 6, в. 1, с. 3, 1975, библиогр.; Бехтерева Н. П. Нейрофизиологические аспекты психической деятельности человека, Л., 1974; Грей Уолтер, Живой мозг, пер. с англ., М., 1966; Ливанов М. Н. Пространственная организация процессов головного мозга, М., 1972, библиогр.; Лурия А. Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга, М., 1969, библиогр.; Павлов И. П. Полное собрание сочинений, т. 3—4, М.—Л., 1951; Пенфильд В. и Робертс Л. Речь и мозговые механизмы, пер. с англ., Л., 1964, библиогр.; Поляков Г. И. Основы систематики нейронов новой коры большого мозга человека, М., 1973, библиогр.; Цитоархитектоника коры большого мозга человека, под ред. С. А. Саркисова и др., с. 187, 203, М., 1949; Шаде Дж. и Форд Д. Основы неврологии, пер. с англ., с. 284, М., 1976; M a s t e г t о n R. B. a. B e r k 1 e y M. A. Brain function, Ann. Rev. Psychol., у. 25, p. 277, 1974, bibliogr.; S h о 1 1 D. A. The organization of cerebral cortex, L.—N. Y., 1956, bibliogr.; Sperry R. W. Hemisphere deconnection and unity in conscious awareness, Amer. Psychol., v. 23, p. 723, 1968.

Источник: http://xn--90aw5c.xn--c1avg/index.php/%D0%9A%D0%9E%D0%A0%D0%90_%D0%93%D0%9E%D0%9B%D0%9E%D0%92%D0%9D%D0%9E%D0%93%D0%9E_%D0%9C%D0%9E%D0%97%D0%93%D0%90

admin
admin

×